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Abstract

In a recent paper, it was shown that the structure-borne sound power from circulation pumps into
straight pipes is primarily through the translation components, which generate longitudinal and bending
waves. In this paper, the subsequent wave mode conversions at pipe junctions are considered. A central
heating system was physically modelled as various combinations of pipes with a radiator. The experimental
measurements were of fixed pipe lengths and resonance effects dominated the system response. In addition,
small misalignments increased wave mode conversion. In order to consider only the effect of number and
orientation of pipe junctions, an idealised pipe system was modelled such that the length of the connecting
pipes could be varied stochastically, thereby randomising out resonance effects. For typically domestic pipe
systems the mixing of wave types is such that the radiated sound is determined by the largest component of
the structure-borne power from the pump into the pipe system, irrespective of the direction.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Circulation pumps are the principal active component in pipe systems and complaints of excessive
noise in domestic central heating systems often result from them. Problems are seldom due to pumps
radiating sound directly into the air [1]. The noise results primarily from liquid-borne sound
transmission through the connecting pipe and radiator systems and structure-borne sound transmission
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.07.017

ding author. Tel.: +44 151 794 4937; fax: +44 151 794 2605.

ress: bmg@liverpool.ac.uk (B.M. Gibbs).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

B.M. Gibbs, N. Qi / Journal of Sound and Vibration 284 (2005) 1099–11181100
that directly excites the pipe walls, and thus the connected radiators and room surfaces at support
points. Therefore, the radiated sound is determined by the installation as well as by the pump. Although
there has been a large body of work on liquid-borne noise, leading to standards [2–4], there has been
relatively little on the structure-borne component [5]. The overall aim of the work, reported in this
paper, was to identify the vibration generating and transmission mechanisms in domestic pumped water
systems that cause annoyance and then to develop appropriate test methods for the pumps.

In a companion paper, which considered structure-borne emission into semi-infinite pipes [6], it
was shown that at low frequencies and for straight pipes the total power can be described in terms
of the torsional, longitudinal, bending, as well as liquid pressure waves. An anechoic structure-
borne power can be calculated from the measured free velocity and mobility of the pump for each
component of vibration and from receiver mobilities of idealised semi-infinite pipes. For the in-
line pumps examined, the three moment-induced power components, which generate a torsional
wave and contribute to the bending waves, are much lower than the force-induced power
components and can be neglected.

In this paper, the emission into finite pipe systems is examined by considering wave propagation
and mode conversions at pipe junctions and other discontinuities. A central heating system was
physically modelled as various combinations of pipes with a radiator. In addition, an analytical
model of idealised pipe systems was developed where the length of the connecting pipes could be
varied stochastically to average out resonance effects such that the effects of number and
geometry of pipe junctions could be examined.
2. Experimental investigation

The objective of the experimental investigation was to assess the relative importance of three
translational components of power into the free end of pipe systems and thereby assess the effect
of the number and orientation of pipe junctions on wave mode transformation. Pipe–radiator
systems were assembled from standard copper piping, 22 mm diameter and 0.9 mm wall thickness.
The pipes were joined to form right-angle bends. All pipe combinations terminated in a single-
panel radiator of dimensions 660� 500� 25 mm.The assemblies were elastically suspended. Fig. 1
shows the configurations of the pipe–radiator systems assembled, in order of increasing
complexity; from a two-pipe–radiator system, to one composed of three mutually perpendicular
pipes. In Figs. 1(a) and (b), the radiator is perpendicular to the plane of the two and three pipes,
respectively. In Fig. 1(c), the radiator is parallel with the direction of pipe 2.

An electro-dynamic shaker generated a force into the free end of a pipe through a force
transducer (Fig. 2). An accelerometer, in line with the force transducer, registered the response
velocity and thus the power into the pipe was obtained. The shaker could be orientated into each
of the three required mutually perpendicular directions. The system energy was assumed to be
concentrated in the bending field generated on the terminating radiator (Fig. 2).

The contributions of the three input powers Pinx
;Piny

;Pinz
can be expressed in terms of power

transmission coefficients gPrx

Pinx
; gPry

Piny
; and gPrz

Pinz
; defined as:

gPrx

Pinx
¼

Prx

Pinx

; gPry

Piny
¼

Pry

Piny

; gPrz

Pinz
¼

Prz

Pinz

; (1)
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Fig. 1. Experimental pipe–radiator set-up, with dimensions: (a) two pipe system; (b) three pipes in the same plane;

(c) three pipes in three mutually perpendicular directions.
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Fig. 2. Set-up for measuring input power at the free end of a pipe and for measuring bending wave power on the

connected radiator.
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where Prx;Pry;Prz is the resultant bending wave field power of the radiator for the pipe excitation
component in the x, y, and z directions, respectively.

The time averaged input power for each component of excitation is obtained from [7] as

Pin ¼

Z 1

0

Im GðF ; a; f Þ

o
df ; (2)

where G(F,a,f) is the one-sided cross spectral density of point force F and acceleration a, o is
angular velocity. The power received, which is of interest, is that which generates a bending wave
field on the radiator, since this field couples efficiently with the air. The measured bending wave
power is obtained from [8] as

Pr ¼
1
2
Zo mv̄2

bðf Þ; (3)

where m is the mass of the radiator, v̄2
bðf Þ is the mean-square velocity of the bending wave field over

the surface and Z is the loss factor. The mean-square velocity was obtained from six accelerometer
measurements (Fig. 2). Since the objective was to investigate the relative contributions of the three
components of power into the pipe–radiator system, the loss factor was not required and the power
to the radiator was assumed to be proportional to mean-square velocity.
3. Measurement results

3.1. Two-pipe system

The measured power transmission coefficients for a two-pipe–radiator system (lay-out as in Fig. 1a)
are shown in Fig. 3a. In Fig. 3b are shown the same values normalised with respect to the transmission
coefficient for power in the axial direction, in this case the x-direction. This component and that in the
y-direction both give rise, after the pipe bend, to a bending wave with displacement perpendicular to
the plane of the radiator surface. The power transmission coefficient gPrz

Pinz
; which corresponds to a

generated bending wave polarised in the plane of the radiator, has the lowest value.
This can be explained by considering the transmission equation at the connection point of the

pipe and radiator [9]

P ¼
1

2

vpf

�� ��2
~Y p þ ~Y r

�� ��2 Reð ~Y rÞ; (4)

where vpf is the pipe free velocity before connection to the radiator, ~Y p the pipe mobility and ~Y r is
the mobility of the radiator. The expression for power can be rewritten, according to Mondot and
Petersson [10], as

P ¼ ~S ~Cf ;

where

~S ¼
1

2

vpf

�� ��2
~Y
�

p
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Fig. 3. (a) Measured transmission coefficients for the two pipe system: ————, gPrx

Pinz
; , gPry

Pinz
; , gPrz

Pinz
;

(b) normalized values: , gPry

Piny
=gPrx

Pinx
; , gPrz

Pinz
=gPrx

Pinx
:
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and

~Cf ¼
~Y
�

p
~Y r

~Y p þ ~Y r

�� ��2 ; (5)

where ~S is the source descriptor, consisting of pipe properties only, the free velocity at the free end
of the pipe and the component mobility. It has units of power. ~Cf is the coupling function, which
expresses the efficiency of the power transmission between pipe and radiator in terms of pipe and
radiator mobilities. The coupling functions for three incident waves were obtained from
mobilities, given in Table 1, of semi-infinite rods and beams and plates, according to [9]. It was
assumed that the in-plane mobilities of the radiator are mass controlled. For the copper pipe:
h=22 mm, r=8900 kg/m3, cL=3900 m/s. For the steel radiator: h=25 mm, r=8003 kg/m3,
cL=5030 m/s.

In Fig. 4 are shown the magnitudes of the coupling function for each component of excitation,
at the junction of pipe and radiator, with the coordinate system as given in Table 1. The value of
Cfxx is consistently greater than that of Cfyy and Cfzz and corresponds to generation of in-plane
waves in the radiator. However, small misalignments at the junction give rise to wave mode
conversion, from a longitudinal wave to a bending wave. This has been confirmed experimentally
[11,12] and in studies of uncertainty in vibroacoustic behaviour of structures [13] which concluded
that misalignments in waveguides, of the order of 4 degrees and less, give rise to significant
variations in the coupling of transverse and in-plane motions. The value of Cfzz increases with
frequency. This, combined with the fact that the incoming bending wave is polarised in the
direction perpendicular to the plane of the radiator, results in a significant contribution to the
bending wave field on the radiator as indicated by gPry

Piny
in Fig. 3. The value of Cfyy is relatively low

and corresponds to predominantly in-plane excitation, with a resultant small contribution to the
bending field, as indicated by gPrz

Pinz
in Fig. 3. The increase in transmission coefficients with

frequency are in part caused by extraneous wave mode conversions due to imperfections and
Table 1

Mobilities at connection point of pipe and radiator

Pipe Radiator

x-direction 1

rScL

1

joM
y-direction ð1 � jÞ

1:34rS
ffiffiffiffiffiffiffiffiffiffi
cLhf

p 1

joM

z-direction ð1 � jÞ

1:34rS
ffiffiffiffiffiffiffiffiffiffi
cLhf

p 1

rh2cL
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Fig. 4. Magnitude of coupling function between pipe and radiator: ————, x-direction (see Table 1): – – – –,

y-direction; , z-direction.
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non-alignments in the system and the overall effect is that there is equal energy partitioning
between all three components at frequencies greater than 800 Hz.

3.2. Three-pipe systems

In Fig. 5 are shown the normalised power transmission coefficients for a three-pipe system
where the three pipes are in same plane with the radiator perpendicular (Fig. 1(b)). Results are
similar to those of the two-pipe system. The power transmission coefficient for the input in the z-
direction, gPrz

Pinz
again is relatively low. However after two junctions, the values of power

transmission coefficient converge with increase in frequency and are of the same order of
magnitude at frequencies above 500 Hz.

In Fig. 6 are shown the normalised power transmission coefficients for three pipes, which are
mutually perpendicular (Fig. 1(c)). In this case, the transmission coefficients are of the same order
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Fig. 5. Normalised transmission coefficients for three pipe system in the same plane: , gPry

Piny
=gPrx

Pinx
; ,

gPrz

Pinz
=gPrx

Pinx
:
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of magnitude over the whole frequency range of 20 Hz–2.5 kHz but with large fluctuations about
unity. Pipe resonances dominate the system response and it was not straightforward to extract the
general trends. In addition, unavoidable imperfections in the construction of the pipe system gave
rise to unquantifiable wave mode conversions. Therefore, an analytical model of idealised pipe
systems was developed where the length of the connecting pipes could be varied stochastically to
average out resonance effects and thereby allow the effect of number and geometry of pipe
junctions on wave mode conversion to be studied.
4. Theoretical model of connected pipe systems

The theoretical model of connected pipe systems did not aim to simulate the experimental
systems described in the previous section but to examine the role of the number and geometry of
junctions on the wave mode transformation throughout pipe systems. By considering the pipes as
idealised waveguides, the extraneous wave mode conversions, due to small misalignments and
workmanship, could be eliminated from the study.

In structure-borne sound propagation along beams, rods and pipes there is, in addition to
dissipative losses, attenuations due to impedance changes such as at junctions. The mechanism of
wave transmission at junctions of rods is generally well understood [9,11,12] and formed the basis
of the present analysis of connected pipes.
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Fig. 6. Normalised transmission coefficients for three pipe system in three dimensions , gPry
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Several simplifying assumptions were incorporated. At low non-dimensional frequencies

O ¼ f =f ring ¼ oa=cLIo0:77 h=a
� �

the mobility of a pipe (a is the pipe radius and h the wall

thickness) is very nearly the same as that of a square-section rod with a radius of gyration
a=

ffiffiffi
2

p
[9]. Therefore, in the following analysis, square cross-sectional rods were considered. The

effects of rotatory inertia and shear deformation were neglected and Euler–Bernoulli theory was
assumed.

Pipe wall damping was neglected and the contained water was treated as a simple mass loading.
In Fig. 7 is shown the predicted and measured point mobility at the end of a copper pipe with and
without water. The predicted value was obtained from the expression for an infinite pipe
contained in Table 1 [9]. The measurements were conducted on a 6 m pipe, which was buried in a
sand box for a distance of 3.5 m. The fluctuations in measured values about the theoretical trend
lines are the result of incomplete damping of bending vibrations by the sand. The fluid loading
contributes little to the mobility of the pipe.

The model was simplified by assuming that the source and receiver pipes are semi-infinite; only
the intermediate rods are finite. Therefore, the receiving system is a semi-infinite pipe, rather than
the radiator in the experimental set-up. The power transmission coefficient is the ratio of the
output power, in bending vibration away from the last junction, to the power incident at the first
junction.
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The input on the ith (semi-infinite) pipe can be an incident longitudinal wave, given by

Li ¼ lie
�jkLixi ejot; (6)

where li is the complex amplitude coefficient and kLi ¼ o
ffiffiffiffiffiffiffiffiffiffiffi
ri=Ei

p
is the longitudinal wave-

number, o is the angular frequency, ri is the material density and Ei is the Young’s modulus.
An incident torsional wave is given by

Ti ¼ tie
�jkTixi ejot; (7)

where ti is the complex amplitude coefficient and kTi ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riJi=Ci

p
is the torsional wave number,

Ji is the polar moment of inertia of the cross-section of the rod and Ci is the torsional rigidity.
An incident bending wave is given by

Bi ¼ bie
�jkBi

xi þ bnie
�kBi

xi
� �

ejot; (8)

where bi is the complex amplitude coefficient of travelling component and bni is that of the

nearfield. The wave number kBi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=ðriSi=BÞ1=4

q
;Si the area of the pipe cross-section and B is

the bending stiffness.
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The power of a bending wave of displacement amplitude bi is given by

PBi
¼

Sirio
3

kBi

bij j
2: (9)

The power of a longitudinal wave of displacement amplitude li is given by

PLi
¼

1

2

Sirio
3

kLi

lij j
2: (10)

The power of a torsional wave is given for completeness, as

PTi
¼

1

2

Jirio
3

kTi

tij j2: (11)

Torsional waves were not considered as inputs but were included as intermediate and output waves.
Since the model assumes zero internal losses, the power into the system must equal the power out.

4.1. Theoretical two-pipe system

The simplest system of connected pipes for analysis consists of two semi-infinite pipes at a right
angle, shown in Fig. 8. When a wave, either a longitudinal or one of two polarised bending waves,
arrives at junction, two reflected waves are generated on pipe 1 and two transmitted waves on pipe
2. When a bending wave arrives at the junction with displacement in the plane of the two pipes, it
gives rise to: a reflected bending wave with in-plane displacement; a reflected longitudinal wave; a
transmitted in-plane bending wave; a transmitted longitudinal wave on pipe 2. The displacements
on the two pipes are given by

y1;B ¼ Bin ejkBx1 þ B1re
�jkBx1 þ B1rne�kBx1

� �
ejot;

x1;L ¼ BinðL1re
�jkLx1Þejot;

y2;B ¼ BinðB2te
�jkBx2 þ B2tne�kBx2Þejot;

x2;L ¼ BinðL2te
�jkLx2Þejot: ð12Þ

For simplicity, Bin set to unity and the time dependency term ejwt, which is common to all wave
expressions, can be excluded.

The boundary conditions at the junction are given by the continuity equations

Displacement : y1;Bjx1¼0
¼ x2;Ljx2¼0;

y2;Bjx2¼0
¼ �x1;Ljx1¼0;

Slope : w1;Bjx1¼0
¼ w2;Bjx2¼0;

Moments : M1;Bjx1¼0
¼ �M2;Bjx2¼0;

Force : F1;Bjx1¼0
¼ �F2;Ljx2¼0;

F2;Bjx2¼0
¼ F1;Ljx1¼0:

(13)

Substituting Eq. (12) into Eq. (13) yields a set of simultaneous equations, which can be solved
to give the powers in Eq. (9)–(11) and thus the transmission coefficients in Eq. (1).
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Fig. 8. Coordinate system and modes of vibration for a junction of two semi-infinite pipes.
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In Fig. 9(a) are shown the four power transmission coefficients for two copper rods,
S=6.25� 10�4 m2, E=12.5� 1010 Nm�2. The four power transmission coefficients were
calculated over the frequency range of 10 Hz–4 kHz in increments of 10 Hz. A similar procedure
applies for a bending wave incident with out of plane displacement (Fig. 9 (b)) and a longitudinal
wave arriving at the junction (Fig. 9 (c)). The system is non-resonant and all values are monotonic
functions of frequency. Wave transformation increases with frequency although that between
bending and torsion is relatively small and slowly varying with frequency.
4.2. Theoretical three-pipe system

Consider a three-pipe system, two semi-infinite pipes connected at right angles through a finite
length pipe, with all pipes in the x–y plane (Fig. 10). For a bending wave incident with
displacement in the plane of the pipes (By1), the displacements on the three pipes are given by

y1;B ¼ ejkBx1 þ B1re
�jkBx1 þ B1rne�kBx1 ;

x1;L ¼ L1re
�jkLx1 ;

y2;B ¼ B2te
�jkBx2 þ B2tne�kBx2 þ B2re

jkBx2 þ B2rnekBx2 ;

x2;L ¼ L2te
�jkLx2 þ L2re

jkLx2 ;

y3;B ¼ B3te
�jkBx3 þ B3tne�kBx3 ;

x3;L ¼ L3te
�jkLx3 :

(14)
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Fig. 9. Power transmission coefficients at a corner junction of semi-infinite pipes: (a) bending wave incident with in

plane displacement, (b) out of plane bending wave, (c) longitudinal wave.
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The output power is carried by a polarised bending wave with displacement in the plane of the
pipes (By1�By3) and by a longitudinal wave (By1�L3). A solution for the power transmission
coefficients is given for a central pipe of length 3 m in Fig. 11(a). It can be seen that there are
several peak values above unity in the frequency range above 700 Hz. This is the result of
computational overflows and underflows at resonant frequencies in this loss-less and thus highly
resonant system. The results are otherwise stable and a power balance can be assumed.

In Fig. 11(b) are shown the power transmission coefficients for the same system but for an out-
of-plane bending wave input (Bz1). Here, torsional waves are generated, given by

t1 ¼ T1re
�jkT x1 ;

t2 ¼ T2te
�jkT x2 þ T2re

jkT x2 ;

t3 ¼ T3te
�jkT x3 :

(15)

The output power is carried from the system by torsional (Bz1�T3) and out of plane bending
waves (Bz1�Bz3). In Fig. 11(c) are the transmission coefficients for a longitudinal wave incident
(L1). Incident torsional waves were not considered since it had been demonstrated previously [6]
that pumps do not impart significant powers through moments, although torsional waves are
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Fig. 11. Power transmission coefficients for three pipes in the same plane: (a) bending wave By1 incident with

displacement in plane: ————, bending wave By3 out; - - - - - - - longitudinal wave L3 out; (b) out of plane bending
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included as part of the wave mode conversion and transmission along the intermediate pipes. In
all cases, the power transmission coefficients increase with frequency and display convergence.
The trends are partially masked by fluctuations due to resonances in the intermediate pipe.

In most domestic piped water systems, the pipes are not in the same plane but in three
dimensions (Fig. 12). For any wave input, there will be four waves generated on each pipe:
longitudinal, torsional and two polarised bending waves. All contribute to the power carried from
the system (By3, Bz3, L3, T3) as well, of course, as the reflected waves (By1, Bz1, L1, T1). The power
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Fig. 12. Coordinate system and modes of vibration for a three mutually perpendicular pipes.
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transmission coefficients, for an incoming bending wave, polarised in the y-direction (By1), are
shown in Fig. 13(a). Again, there are some values greater than unity because of the increased
computational demands of this model and some instability in the calculation. Fig. 13(b) shows
results for a bending wave incident, with displacement in the z direction (Bz1) and Fig. 13(c) is for
a longitudinal wave incident (L1). In all cases, values converge with increase in frequency,
indicating a trend towards energy equipartition.
5. Stochastic model of a finite connecting pipe

In order to extract the general effect of the junctions, the length of the middle pipe in a three
pipe system (see Fig. 12 for coordinate system) was varied and values of average power ratios
obtained. In domestic central heating systems, most of the pipe lengths are within the range 0.5
and 4 m. In this study, 100 values, between 0.5 and 4 m, were selected randomly. In order to
extract the trend in bending power transmission coefficient, the log-average values of power
transmission coefficient were obtained, along with the standard deviations, for the sample of 100
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Fig. 14. Average values and standard deviations of power transmission coefficients for 100 random values of central

pipe length in three mutually perpendicular connected pipes, for bending wave By3 out: ðaÞ gBy3
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randomly generated pipe lengths. In Figs. 14 are shown the average values of transmission
coefficient, plus and minus one standard deviation, for an outgoing bending wave polarised in the
y-direction, for three possible input waves. In Fig. 15 are shown values for an outgoing bending
wave polarised in the z-direction. In Fig. 16, the average values are compared. For each input
wave, the longitudinal or either of the two polarised bending waves, the wave mode conversion is
sufficient for equipartioning of the energy at high frequencies, in most cases. It is reasonable to
assume that a more complicated model of more than two junctions will cause more wave mode
conversion with equipartitioning at a lower frequency than indicated in Fig. 13.
6. Concluding remarks

For pipe dimensions typical of domestic systems and for the frequency range of interest, the
circulation pumps generate plane waves in the liquid and longitudinal and polarised bending
waves in the pipes.

Idealised pipe systems were considered, with no imperfections or misalignments. It was shown
that for three mutually perpendicular connected pipes the contributions to far-field bending fields
of the three components of force generated by a pump converge to equal values at about 2 kHz.

In real pipe systems, increased wave mode conversions occur due to misalignments and
imperfections in workmanship. Equipartitioning of energy occurs at lower frequencies. For the
three-pipe–radiator system measured, the contributions to the far-field bending field of the three
components of force were the same over the whole frequency range of interest.



ARTICLE IN PRESS

Fig. 16. Average values of power transmission coefficients for 100 random values of central pipe length in three

mutually perpendicular connected pipes: (a) bending wave By3 out, (b) bending wave Bx3 out.
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Fig. 15. Average values of power transmission coefficients and standard deviations for bending wave Bz3 out:

ðaÞ gBz3
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It follows that the most influential component of input power from a pump is simply the largest,
irrespective of component direction. Domestic installations are likely to be in three dimensions,
involving several junctions and other discontinuities. This, and inevitable imperfections in
workmanship will contribute to wave mode conversion and thus enhanced mixing of the
contributions of the components of the input power.
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